
10.5.2011 MFF D3S Seminar 1/20 (27)

An Approach to Embedded System
Development Based on
Dynamically-typed Language

Marek Paška

10.5.2011 MFF D3S Seminar 2/20 (27)

Outline

1)Introduction (Embedded devices)

2)The proposed development process

3)Details of the compilation process

4)Case study [optional]

10.5.2011 MFF D3S Seminar 3/20 (27)

Software in Embedded Systems

● Constrained hardware resources (cheap HW)
● Dependable

– failure may have severe consequences
– hard to fix the errors

● Usually works in reactive mode
– hard/soft realtime

● Computational time is more expensive than
programmer's time

10.5.2011 MFF D3S Seminar 4/20 (27)

State of the Art in Embedded SW

● (Development tends to be conservative)
● Higher level, general purpose languages

– Java
● Formal methods
● Model-driven development, generative

programming, ...

10.5.2011 MFF D3S Seminar 5/20 (27)

Ease development even further?

● Python – very high-level language
– generate efficient native code?
– formal verification?

10.5.2011 MFF D3S Seminar 6/20 (27)

RPython

● Rich enough subset of Python
– comfortable for programmer

● Part of the PyPy project (ETH Zürich)
– experimental Python interpreter and compiler

● Good characteristics of dynamic languages
– shorter code (less errors)
– open for new paradigms (DbC, AOP)

● Translation to various codes (C, JVM)

10.5.2011 MFF D3S Seminar 7/20 (27)

Development Process

● Software is primary written in RPython
– can run on standard Python interpreter

● C code can be generated from the RPython
source
– results in high performance native code

● Java byte-code is also generated
– to be verified by tools developed for Java

10.5.2011 MFF D3S Seminar 8/20 (27)

Code Generation Scheme

10.5.2011 MFF D3S Seminar 9/20 (27)

PyPy Compilation Chain

10.5.2011 MFF D3S Seminar 10/20 (27)

Abstract Interpretation

● Input: initialized graph of objects (“object
space”) in the memory of Python interpreter

– And the selected entry point
● Output: internal PyPy program representation

called flow graph
● data types of the initial flow graph are abstract

10.5.2011 MFF D3S Seminar 11/20 (27)

Flow Graph Example

10.5.2011 MFF D3S Seminar 12/20 (27)

Flow Graph Transformations

● Can change the structure of the graph
● Can add new information
● Examples:

– Add type annotations for a particular code
generator

– Add reference counting for GC

10.5.2011 MFF D3S Seminar 13/20 (27)

C vs. Java-btcd. Generation

● Java bytecode:
– Assign JVM types to the

abstract types

– Generate bytecode

● C:
– Assign C types to the

abstract types

– Exception transformation

– GC transformation (empty
for BoehmGC)

– Generate C code

10.5.2011 MFF D3S Seminar 14/20 (27)

Java Pathfinder (JPF)

● Explicit model-checker for Java
bytecode

● JVM with backtracking
– deadlocks
– uncaught exceptions
– Linear Temporal Logic

10.5.2011 MFF D3S Seminar 15/20 (27)

Process Dependability

● How can we know that the C and Java
bytecode programs behave the same?

– The most tricky parts (object space initialization,
abstract interpretation) are shared

– We have precise definition of the additional
transformation for the C compilation, however
no formal proof of correctness

10.5.2011 MFF D3S Seminar 16/20 (27)

Shared Threading Model

● All variants of the program (interpreted
RPython, C, Java bytecode) use monitors as
we know them from the Java world

– Allows JPF to perform optimizations
– Monitors for C and RPython are implemented in

the parlib library
– (They are structured and that's nice)

10.5.2011 MFF D3S Seminar 17/20 (27)

Memory Requirements

10.5.2011 MFF D3S Seminar 18/20 (27)

Computational Performance

PyPy-C

PyPy-JVM

C

C -O6

PyPy-C backendopt -O6

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Numerical Polynom Integration

Time [s]

10.5.2011 MFF D3S Seminar 19/20 (27)

Linear Temporal Logic

● Defined over sequences of states

– s
0
s

1
s

2
s

3
...

● There are propositions that hold (not hold) for
every particular state
– φ = x > 4

– φ(s
2
) = true or φ(s

2
) = false

● Temporal operators

– Xφ, Gφ, Fφ, φ
1
Uφ

2

10.5.2011 MFF D3S Seminar 20/20 (27)

LTL Examples

● F(all_records_processed)
– some positive event guaranteed

● G(there_is_at_least_one_runnable_thread)
– program is deadlock-free

● G(request => X(F(response)))
– request is inevitable followed by response

● G(¬file_closed U result_written)
– write and then close the file

10.5.2011 MFF D3S Seminar 21/20 (27)

Case Study: NVR

● Network Video Recorder is a device that
manages IP cameras over computer network.
– records video produced by cameras
– records events produced by cameras

● motion detection
● alarms

10.5.2011 MFF D3S Seminar 22/20 (27)

NVR Internals

● For every camera there is a dedicated camera
driver that downloads the video and events.

● Events are summarized to time intervals and
then written into a database.

10.5.2011 MFF D3S Seminar 23/20 (27)

NVR Scheme

10.5.2011 MFF D3S Seminar 24/20 (27)

Real LTL Formula

G((method:Driver.alarmOccurred)
 ->(X(F(method:AlarmLog.writeAlarm))))

● Whenever camera driver detects an alarm it is
inevitably written into the alarm log.

10.5.2011 MFF D3S Seminar 25/20 (27)

Real LTL Formula (2)

G((method:Summarizer.intervalElapsed)
 =>(X(
 (~(method:Summarizer.clearInterval))
 U(method:Database.writeInterval)
)
)
)

● Whenever a time interval elapses, the
summarized value is not cleared until it is
written into the database

10.5.2011 MFF D3S Seminar 26/20 (27)

Conclusion

● A novel approach to embedded systems
development
– very high level description (RPython)
– flexible code generation
– LTL-properties verified by Java Pathfinder holds

also for the production C code

10.5.2011 MFF D3S Seminar 27/20 (27)

The End

● Thank you for your attention.

●?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

