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An Approach to Embedded System 
Development Based on 
Dynamically-typed Language
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Outline

1)Introduction (Embedded devices)

2)The proposed development process

3)Details of the compilation process

4)Case study [optional]
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Software in Embedded Systems

● Constrained hardware resources (cheap HW)
● Dependable

– failure may have severe consequences
– hard to fix the errors

● Usually works in reactive mode
– hard/soft realtime

● Computational time is more expensive than 
programmer's time
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State of the Art in Embedded SW

● (Development tends to be conservative)
● Higher level, general purpose languages

– Java
● Formal methods
● Model-driven development, generative 

programming, ...
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Ease development even further?

● Python – very high-level language
– generate efficient native code?
– formal verification?
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RPython

● Rich enough subset of Python
– comfortable for programmer

● Part of the PyPy project (ETH Zürich)
– experimental Python interpreter and compiler

● Good characteristics of dynamic languages
– shorter code (less errors)
– open for new paradigms (DbC, AOP)

● Translation to various codes (C, JVM)
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Development Process

● Software is primary written in RPython
– can run on standard Python interpreter

● C code can be generated from the RPython 
source
– results in high performance native code

● Java byte-code is also generated
– to be verified by tools developed for Java
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Code Generation Scheme
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PyPy Compilation Chain
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Abstract Interpretation

● Input: initialized graph of objects (“object 
space”) in the memory of Python interpreter

– And the selected entry point
● Output: internal PyPy program representation 

called flow graph
● data types of the initial flow graph are abstract
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Flow Graph Example
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Flow Graph Transformations

● Can change the structure of the graph
● Can add new information
● Examples:

– Add type annotations for a particular code 
generator

– Add reference counting for GC
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C vs. Java-btcd. Generation

● Java bytecode:
– Assign JVM types to the 

abstract types

– Generate bytecode

● C:
– Assign C types to the 

abstract types

– Exception transformation

– GC transformation (empty 
for BoehmGC)

– Generate C code
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Java Pathfinder (JPF)

● Explicit model-checker for Java 
bytecode

● JVM with backtracking
– deadlocks
– uncaught exceptions 
– Linear Temporal Logic
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Process Dependability

● How can we know that the C and Java 
bytecode programs behave the same?

– The most tricky parts (object space initialization, 
abstract interpretation) are shared

– We have precise definition of the additional 
transformation for the C compilation, however 
no formal proof of correctness
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Shared Threading Model

● All variants of the program (interpreted 
RPython, C, Java bytecode) use monitors as 
we know them from the Java world

– Allows JPF to perform optimizations
– Monitors for C and RPython are implemented in 

the parlib library
– (They are structured and that's nice)
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Memory Requirements



10.5.2011 MFF D3S Seminar 18/20 (27)

Computational Performance

PyPy-C

PyPy-JVM
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Linear Temporal Logic

● Defined over sequences of states

– s
0
s

1
s

2
s

3
...

● There are propositions that hold (not hold) for 
every particular state
– φ = x > 4

– φ(s
2
) = true or φ(s

2
) = false

● Temporal operators

– Xφ, Gφ, Fφ,  φ
1
Uφ

2
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LTL Examples

● F(all_records_processed)
– some positive event guaranteed

● G(there_is_at_least_one_runnable_thread)
– program is deadlock-free

● G(request => X(F(response)))
– request is inevitable followed by response

● G(¬file_closed U result_written)
– write and then close the file
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Case Study: NVR

● Network Video Recorder is a device that 
manages IP cameras over computer network.
– records video produced by cameras
– records events produced by cameras

● motion detection
● alarms
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NVR Internals

● For every camera there is a dedicated camera 
driver that downloads the video and events.

● Events are summarized to time intervals and 
then written into a database.
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NVR Scheme
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Real LTL Formula

G((method:Driver.alarmOccurred)
   ->(X(F(method:AlarmLog.writeAlarm))))

● Whenever camera driver detects an alarm it is 
inevitably written into the alarm log.
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Real LTL Formula (2)

G((method:Summarizer.intervalElapsed)         
  =>(X(                                       
         (~(method:Summarizer.clearInterval)) 
         U(method:Database.writeInterval)
      )                                      
    )
 )

● Whenever a time interval elapses, the 
summarized value is not cleared until it is 
written into the database
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Conclusion

● A novel approach to embedded systems 
development
– very high level description (RPython)
– flexible code generation
– LTL-properties verified by Java Pathfinder holds 

also for the production C code
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The End

● Thank you for your attention.

●?
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